博客
关于我
图像分割系列5_GMM(高斯混合模型)对图像进行分割
阅读量:686 次
发布时间:2019-03-17

本文共 722 字,大约阅读时间需要 2 分钟。

高斯混合模型(GMM)是一种常用的图像分割算法,能够通过混合不同高斯分布来识别图像中的多个区域。以下将详细介绍GMM算法在图像分割中的实现过程及其应用。

GMM算法在图像分割中的实现步骤

  • 读取输入图像

    首先,代码从指定的文件路径读取图像数据,并检查图像是否加载成功。如果加载失败,程序会输出相应错误信息并终止运行。

  • 移位窗口设置

    创建一个移位窗口来显示图像的实时调整,方便用户直观观察图像的显示效果。

  • 初始化模型参数

    初始化GMM模型的参数,包括指定混肽数量(默认为3)、设置颜色样本以及图像的尺寸和通道数。这些参数决定了最终结果图像的颜色分配方式。

  • 转换图像数据为样本

    将图像的RGB颜色空间数据转换为浮点数样本数据,用于后续模型训练。每个像素的颜色信息被提取并存储到样本矩阵中。

  • GMM模型训练

    使用EM算法训练GMM模型。EM算法通过极大似然估计的思想,逐步优化模型参数,使其能够代表样本数据分布的最优混合模型。训练过程可能会耗费较长时间,具体时间取决于图像的复杂程度和算法的性能。

  • 模型预测与图像标记

    使用训练好的GMM模型对图像进行预测。通过提取图像样本并与模型进行匹配, 对图像中的每个像素进行颜色标记,最终生成分割后的图像。颜色分配使用预设的颜色样本,确保图像分割结果具有良好的视觉效果。

  • 结果展示与性能分析

    分割后的结果图像显示在窗口中,用户可以通过按下回车键查看结果。同时,程序记录模型训练和预测的执行时间, 提供性能评估信息。尽管GMM算法在处理复杂图像时表现优异,但由于其对计算资源的要求较高,在工程实时图像处理中仍需谨慎使用。

  • 通过以上步骤,GMM算法能够有效地实现图像分割任务,为图像处理领域提供了一种灵活的解决方案。

    转载地址:http://ezuhz.baihongyu.com/

    你可能感兴趣的文章
    ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
    查看>>
    ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
    查看>>
    ntpdate 通过外网同步时间
    查看>>
    NTPD使用/etc/ntp.conf配置时钟同步详解
    查看>>
    NTP及Chrony时间同步服务设置
    查看>>
    NTP配置
    查看>>
    NUC1077 Humble Numbers【数学计算+打表】
    查看>>
    NuGet Gallery 开源项目快速入门指南
    查看>>
    NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
    查看>>
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Numix Core 开源项目教程
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>